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In memory of Arthur ). Freeman, a great advisor, mentor, and colleague

Amorphous oxide semiconductors (AOSs)—ternary or quaternary oxides of
post-transition metals such as In-Sn-O, Zn-Sn-O, or In-Ga-Zn-O—have been
known for a decade and have attracted a great deal of attention as they pos-
sess several technological advantages, including low-temperature large-area
deposition, mechanical flexibility, smooth surfaces, and high carrier mobility
that is an order of magnitude larger than that of amorphous silicon (a-Si:H).
Compared to their crystalline counterparts, the structure of AOSs is extremely
sensitive to deposition conditions, stoichiometry, and composition, giving rise
to a wide range of tunable optical and electrical properties. The large parameter
space and the resulting complex deposition—structure—property relationships in
AOSs make the currently available theoretical and experimental research data
rather scattered and the design of new materials difficult. In this work, the key
properties of several In-based AOSs are studied as a function of cooling rates,
oxygen stoichiometry, cation composition, or lattice strain. Based on a thor-
ough comparison of the results of ab initio modeling, comprehensive structural
analysis, accurate property calculations, and systematic experimental measure-
ments, a four-dimensional parameter space for AOSs is derived, serving as a
solid foundation for property optimization in known AOSs and for design of

next-generation transparent amorphous semiconductors.

1. Introduction

The research area of transparent conducting oxides (TCOs)
dates back to 1907 when CdO was reported to combine both
optical transparency in the visible range and good electrical
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conductivity!l  Following the discovery
of SnO, with a similar unique combi-
nation of properties,”! several patents
were filed in the 1940s to employ TCOs
as antistatic coatings and transparent
heaters—long before the discovery of the
now well-known Sn-doped In,O; (ITO)
and Al-doped ZnO,B! widely employed
as flat panel display electrodes in the
past decades. Despite great technolog-
ical demand for TCOs*2% and exten-
sive experimental efforts to improve the
conductivity via impurity doping,?'?? to
tune the work function and carrier con-
centration via cation composition,?3-28 to
achieve two-dimensional transport via het-
erointerfaces,?”l and to p-dope the oxides
toward active layers of transparent elec-
tronics,?%321  theoretical understanding
of these fascinating materials has lagged
behind significantly. The first electronic
band structure of ITO was calculated in
2001;333 the role of native defects in proto-
type TCOs was understood after 2002;3+
371 the properties of multi-cation TCOs
were first considered in 200483742 fol-
lowed by modeling of novel TCO hosts!***4 and spin-dependent
transport in transition-metal-doped TCOs;*! the nature of the
band gap in In,0; was clarified in 2008;? and a first high-
throughput search for p-type TCOs was performed in 2013.17]

Complex oxides that consist of multiple post-transition
metals, such as InGaZnO,, have recently become competi-
tive with silicon as the active transistor layer to drive arrays of
pixels in large area displays.”131924 As the billion-dollar display
industry moves forward, the amorphous phase of the complex
oxides is favored both for flexible and high-resolution display
applications.3-1648-59 The unique properties of AOSs were first
demonstrated in 1990,°) and the research area has been growing
exponentially since then. Unlike Si-based semiconductors, AOSs
were shown to exhibit optical, electrical, thermal, and mechanical
properties that are comparable or even superior to those pos-
sessed by their crystalline counterparts.*8->8 Table 1 summarizes
the key physical properties of best-performing crystalline TCOs
and AOSs; the differences (or the lack thereof) between the two
will be discussed in detail in the respective sections below.

Many fundamental aspects of AOSs have been addressed
theoretically. The first molecular dynamics (MD) simulations
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Table 1. Basic properties of crystalline TCOs and transparent amor-
phous oxide semiconductors.

Property Crystalline Transparent Amorphous Oxide
Conducting Oxides Semiconductors
Structural Ordered network of Disordered network
regular MO polyhedra of distorted MO,
Optical Optical band Tail states, reduced optical
gap >3eV band gap
Transparency in Transparent upon
the visible 80-90% Burstein-Moss shift
Electrical:

— Carrier concentration ~ n=10" cm™ (Vp); n<=100cm>

n=10?" cm™ (doping) (non-stoichiometry)

— Carrier mobility 1=10-100 cm? V' s 1=10-60 cm?V~'s7!

Thermal Few stable compositions, Wide range of stable composi-
K=1W mK' tions, k=1 W mK™!
Mechanical Brittle Bendable

of amorphous indium oxide appeared in 2009, followed
by models of electron transport in multi-cation AOSs,62-¢7]
DFT calculations of defect formation,/®®7°] and statistical
descriptions of amorphous network.”*~78] However, several key
questions regarding the nanostructure and morphology, crys-
tallization, carrier generation, and conductivity mechanisms
in AOSs remain unanswered and require a unified theoretical
framework capable of handling all these aspects in tandem.

Tunable electrical conductivity—the ability to change carrier
concentration over a wide range of useful values while main-
taining superior mobility—is arguably the central technological
advantage of an AOS.P%62646579-83] Tn marked contrast to the
crystalline TCOs, where the electron mobility is governed pri-
marily by the scattering on ionized impurities, phonons, and
grain boundaries, the charge transport in AOSs is more com-
plex. Although amorphous materials lack grain boundaries, the
structural long-range disorder, as well as strong local distor-
tions in the metal-oxygen (M—O) polyhedra, give rise to several
new terms in the electron transport. Adhering to the Drude
model, the electron mobility in an AOS can be represented with
the following equation:

m” 1 1 1 1 1
— + + + +

1
,u 4 Tcrystallinity T defects Tibrons

1)

Tcomposition Tstrain

where the contributions to the overall relaxation time are due
to i) size and density of nanocrystalline inclusions; ii) spatial
distribution and clustering of incorporated cations; iii) local
point defects; iv) thermal vibrations; and v) piezoelectric effects
associated with internal lattice strain. Clearly, the above clas-
sifications are figurative; the terms are likely to be intermixed
for most AOS materials. For example, cation composition has a
strong effect on the crystallization processes, defect formation,
thermal properties, and can introduce significant lattice strain
in amorphous structure. However, understanding the micro-
scopic origins for each of the above terms via systematic inves-
tigations will help untangle the different contributions to the
complex transport phenomena in AOSs.
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Accurate determination of the structural characteristics of an
AOS remains challenging. Whereas Si or Ge-based semiconduc-
tors or glasses like SiO, from the main group metal oxides are
covalent, the oxides of post-transition metals possess weaker
metal-oxygen bonding, primarily ionic in nature. The strength
of the M-O bonding determines the clarity of the local polyhe-
dral structure. Strong local distortions in the M-O polyhedra in
AOSs are not expected to affect the electron effective mass or the
band gap—both should remain similar to the values in the corre-
sponding crystalline counterparts.*¥ On the other hand, the local
distortions may affect the medium-range structure (e.g., edge or
corner-sharing between the M—O polyhedra and their integration
into an extended network) and facilitate the formation of struc-
tural defects that govern the degree of electron localization near
the valence and conduction band edges and deep inside the band
gap. Hence, instead of classical atomistic approaches commonly
employed for modeling of glasses, quantum-mechanical mole-
cular dynamics simulations combined with accurate density-
functional calculations are required for AOSs in order to reliably
describe the formation of both shallow and deep defects respon-
sible for carrier generation and the charge transport limited by
electron scattering and trapping. In addition, accurate charac-
terization of the structural features beyond the first shell (i.e.,
beyond the nearest neighbors) is necessary in order to explain
the high sensitivity of the AOSs properties to the deposition/®
and post-deposition conditions,® particularly oxygen environ-
ment,®] as well as the chemical composition of the sample.[*”:5]

In this work, ab initio MD simulations and hybrid-functional
DFT-based electronic structure calculations are performed
i) to systematically study the local and medium-range struc-
tural characteristics of several prototype In-based oxides with
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different degree of amorphization, oxygen stoichiometry, cation
composition, and/or lattice strain and ii) to connect the struc-
tural peculiarities to the resulting electronic, optical, or thermal
properties of each material. Based on good agreement between
the theoretically established trends and those observed experi-
mentally, a unified model for prototype In-based AOS is pro-
posed. The derived set of generic growth-structure-property
relationships will help expedite the search for optimal prepara-
tion conditions—or those that ensure a desired set of proper-
ties—within the large parameter space of AOSs.

2. Key Structural Properties of Amorphous
Indium Oxide

Theoretically, the atomic structure of an amorphous material can
be obtained using molecular dynamics (MD) simulations. In a
liquid-quench approach, an initial crystalline structure is melted
at a temperature well above the oxide melting point to remove
the crystal structure memory and then rapidly quenched to a low
temperature, usually to 100 K or below. Prior to optimization of
the atomic coordinates within density functional theory (DFT) at
0 K, the quenched structure is equilibrated at room temperature
to ensure that an energetically stable solution is reached. The
electronic properties are then calculated for the DFT-optimized
structure using local density approximation, generalized gradient
approximation, or a hybrid functional approach for a more accu-
rate description of the occupied and empty states.

Our analysis begins from a prototype AOS structure—
undoped stoichiometric indium oxide. Figure 1 illustrates the
pair correlation functions (PCFs) of 1) indium oxide melted at

—~
o
-

~ Face-shared

— Edge-shared
Corner-shared

— Non-shared
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Figure 1. Structural properties of amorphous indium oxide as obtained from ab initio MD simulations. a) The calculated pair correlation function for
In,03 melt (green); amorphous In,O; (purple); amorphous SiO, (blue); and crystalline In,O3 (dashed grey line). b) The atomic structure of amorphous
In,03. Oxygen or indium atoms are represented as small red or large purple spheres, respectively. c) The atomic structure of amorphous SiO,. Oxygen
or silicon atoms are represented as small red or large blue spheres, respectively. d) Distribution of the face, edge, corner, and non-shared In neighbors
as a function of the In-In distance in amorphous (solid lines) and crystalline (dashed line) In,O;. ) Distribution of differently coordinated In and O
atoms in amorphous In,03.
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3000 K for 30 ps, 2) amorphous indium oxide quenched from
the melt down to 100 K at a rate of 200 K/ps and then equili-
brated at 300 K for 6 ps, and 3) crystalline In,O3 structure held
at room temperature for 6 ps. In the amorphous state, only the
first-shell peak that corresponds to the nearest In-O bonds, is
clearly defined; at a longer range, all structural features are sup-
pressed (Figure 1a). The latter highlights an important differ-
ence between an amorphous oxide semiconductor and a glass;
for example, amorphous SiO,. As one can see from the atomic
structure of amorphous SiO, obtained using MD simulations
with the same quench rates as for the amorphous indium oxide,
Figure 1b and 1c, the tetrahedral coordination of Si is preserved
in the glass phase—as signified by the narrow Si—O peak and a
well-defined O-O peak in the distribution function. The first-
shell metal-oxygen structure, that is, the Si-O distances, Si-O
coordination, and O-Si-O angles, inside the polyhedra closely
correspond to those of the crystalline oxide. In marked con-
trast to a random arrangement of the regular SiO, polyhedra,
amorphous indium oxide features highly distorted InO,, poly-
hedra: the O-O peak in PCF is suppressed (Figure 1a) and the
average variance of the In—O distances at room temperature is
8.4 x 10 A%—an order of magnitude larger than that in amor-
phous SiO,, 8.5 x 10 A2 The large distortions in the local
structure in the amorphous semiconductor originate from the
weak, ionic bonding between oxygen atoms and the spherically
symmetric s-orbitals of the post-transition metal. As a result,
the average In—O coordination is reduced from 6.0 to 5.3 upon
the crystalline-to-amorphous transition, and over 25% of the In
atoms have a coordination of five or below (Figure le)—even
in the perfectly stoichiometric case, that is, for the O/In ratio
of 1.50.

Combining the irregular InO polyhedra into a network deter-
mines the medium-range In-In structure. In bixbyite In,Os3,
the second and third shells of indium are associated with six In
neighbors at 3.3 A that share two oxygen atoms with the central
In atom (i.e., the corresponding polyhedra are edge-shared) and
six In neighbors at 3.8 A that share one oxygen atom (corner-
shared polyhedra), respectively. In the amorphous phase, a
significant number of edge-shared connections become corner-
shared (Figure 1d): out of the total number of all In-In pairs
that share one, two, or three oxygen atoms, as much as 80%
share only a single oxygen atom. The In-O-In angles for the
corner-sharing connections vary from 95° to 160° (with the
peak located at 115°). The corresponding distance distribu-
tion is nearly twice as wide as the corner-sharing distribution
in the crystalline In,03 and overlaps significantly with the dis-
tance distribution for the edge-shared In-In pairs (Figure 1d).
Consequently, the two peaks in the In-In distribution are
nearly indistinguishable and hard to resolve experimentally
(i-e., the coordination number and Debye—Waller factor for the
second and third shells cannot be uniquely fit). Yet, informa-
tion regarding the In-In shells is essential for understanding
the properties of AOSs: it has been shown that medium-range
ordering plays a crucial role in the carrier transport of amor-
phous indium oxidel® as discussed in the next section.

Another important structural peculiarity of the AOSs is
the existence of non-shared InO polyhedra. In perfectly stoi-
chiometric amorphous indium oxide, there is an appreciable
number of the In—In pairs that do not share an oxygen atom
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although the two are located at a short distance from each
other, namely 3.4 — 4.6 A (Figure 1d). As it will be shown below,
the presence of such non-shared and often under-coordinate In
atoms (and, similarly, the under-coordinate oxygen atoms; c.f.,
Figure 1e) leads to the formation of tail states near the oxide
band edges.®”] These defect states may contribute to the optical
absorption in the visible range (resulting in a negative bias
illumination stress instability in AOS-based thin film transis-
tors®®)) and limit carrier transport in AOSs.

3. Properties of Indium Oxide across Crystalline
to Amorphous Transition

Upon transition from crystalline to amorphous phase, the
structure of undoped indium oxide grown by pulsed laser
deposition (PLD) using different substrate temperatures, Tj,
changes from 1) crystalline grains, Ty = 600 °C, to 2) a multi-
phase mixture with the crystalline fraction decreasing linearly
from 0.82 at Ty = 200 °C to 0.36 at Ty = 25 °C, and to 3) an amor-
phous material with no X-ray Bragg peaks below Ty = 0 °C.[84
Accordingly, the transport regimes across the transition may
be classified as band conductivity limited by grain bounda-
ries (Hall mobility = 70 cm? V! s7! for Ty > 400 °C); multi-
phase scattering/percolation (1 = 20-40 cm? V' s7! for Ty =
50-300 °C); and electron localization in the amorphous phase
(u =20 cm? V! s7! for Ty < 50 °C). Strikingly, however, when
the crystalline fraction of In,O;3 drops to zero at Ty = 0 °C, the
Hall carrier mobility reaches as much as 60 cm? V! s71, nearly
the value measured in undoped crystalline In,0;.84 Scattering
alone cannot explain the observed mobility peak because: i) the
size of nano-crystalline In,03 inclusions observed by high-reso-
lution transmission electron microscopy (HR-TEM) decreases
smoothly across the transition, from 2.2-3.4 nm at Ty = 0 °C
to 2.0-2.4 nm at Ty = =50 °C,B4 and ii) the carrier concentra-
tion remains nearly constant, n = 2.7 — 3.2 X 10?° cm™ (in sam-
ples grown with oxygen partial pressure of 8 mTorr®#) for the
deposition temperatures from 50 °C to +100 °C. Moreover, the
average metal-oxygen and metal-metal distances vary insignifi-
cantly (< 2%) upon the crystalline-amorphous transition and
cannot explain the mobility changes.’®4

A thorough systematic comparison of the local structural
characteristics of the amorphous indium oxide obtained from
extended X-ray absorption fine structure (EXAFS) measure-
ments and from ab initio MD liquid-quench simulations has
shown that the major differences occur in the second and
third indium shells,®4 with the number of the edge-sharing
InO polyhedra being greatly diminished in the amorphous
phase; c.f., Figure 1d. The local structure evolved as a func-
tion of deposition temperature in the case of the films analyzed
by EXAFS and as a function of quench rate in the case of MD
simulations. A striking agreement was observed between the
structural trends observed by EXAFS as a function of deposi-
tion temperature and the structural trends observed for MD
simulations as a function of quench rate. Based on the excellent
agreement between the measured and simulated structures,
the experimental deposition temperature scale (T3 = 25 °C to
-100 °C) was aligned with the MD quench rate scale (5-700 K
ps}).B4 Further look into the theoretical atomistic structures

© 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2. Structural and electronic properties of amorphous indium oxide with different degree of amorphization. a) Experimental Hall mobility as
a function of deposition temperature in amorphous indium oxide grown using pulsed laser deposition under oxygen partial pressure of 8 mTorr.
b) Fraction of corner-shared InO-InO or InO¢—InOg polyhedra out of the total number of the In—In pairs that share one, two, or three oxygen atoms
in amorphous indium oxide structures obtained with different MD quench rates. Spatial distribution of the InOg polyhedra in the supercell ranges
from clusters (slow cooling), to corner-shared chains (intermediate cooling); to random distribution (fast cooling). c) The calculated density of states
near the Fermi level in amorphous indium oxide structures obtained with different MD quench rates. d) The charge density distribution calculated for

occupied and e) empty states near the Fermi level for the amorphous structure obtained with 170 K ps

obtained at different quench rates reveals that the spatial dis-
tribution of the indium atoms with octahedral coordination;
that is, the six-fold coordination with oxygen atoms, varies from
1) clusters of InO4 polyhedra with short-distant edge-sharing
fraction reaching 50% (same as in crystalline In,O;) in the
amorphous structures obtained using slow quench rates, to 2)
chains of InOg polyhedra primarily connected via long-distant
corner-sharing in structures quenched with intermediate
rates, and to 3) a random distribution of disconnected InOg
polyhedra in the most amorphous structures (quench rates
400 K ps~! and above; Figure 2). Although slower cooling rates
(K ns™1) would be required to describe the crystallization pro-
cess (Tg > 50 °C), ab initio MD simulations are able to capture
the important structural variations that occur during the transi-
tion into the amorphous state. We believe that the clustering of
the InOg polyhedra found in the amorphous structures upon
slow quenching (Figure 2b), corresponds to the initial nuclea-
tion of the In,O; nanocrystallites that have been observed
using HR-TEM.BY As the deposition temperature changes
from Ty = 0 °C to Tj = 150 °C, the size of the nanocrystallites
increases and the scattering-limited mobility decreases from
60 cm? V7! 571 to 20 cm? V7! 571, respectively. When the crys-
talline fraction exceeds 80% (I3 > 200 °C), the carrier mobility
begins to increase toward the value of the crystal.

Thus, the three-fold increase in the mobility (in samples
deposited at Ty = 0 °C) is attributed to the formation of corner-
shared InOg4 polyhedra chains (in structures obtained at MD
quench rate of 200 K ps7!). Accurate density-functional elec-
tronic band structure calculations of the oxides with different
degree of amorphization (cooling rates 5 — 700 K ps~!) help

Adv. Electron. Mater. 2017, 1700082 1700082 (5 of 17)

~! quench rate.

determine the conductivity mechanisms below the crystalline-
amorphous transition. The calculated density of states (DOS)
for the structures obtained with the rates of 50 — 250 K ps~! fea-
tures two peaks with a clear gap at the Fermi level (Figure 2c).
The gap, known as a Coulomb gap,® separates the occupied
and empty states and signifies that the electron—electron inter-
actions (a Coulomb blockade) result in the electron localization
in a particular state below the Fermi level, while the empty state
above Ey is available for the electron to hop through—once
the temperature is high enough. The charge density distribu-
tion calculated for the energy ranges that correspond to the
two states, clearly illustrates that the electron is localized along
a chain in a particular direction, whereas the empty, conduc-
tion path runs in a different (perpendicular) direction. Impor-
tantly, both chains are formed by low-coordinate under-shared
InO polyhedra, and in both cases the charge avoids the indium
atoms with octahedral coordination, that is, those that reach
their natural coordination of 6 (Figure 2d and e). This suggests
that the long-range formation of the connected InOg polyhedra
leads to oxygen depletion in the areas adjacent to the chains
and the charge is localized in the oxygen-depleted regions.
Above and below the mobility maximum, that is, for slower
(5 K ps!) or faster-quenched (300 K ps™!) amorphous struc-
tures, the Coulomb gap softens as the two states overlap
resulting in a nonzero DOS (Figure 2c). This occurs due to a
weaker electron repulsion caused by structural reorganization:
the long-range structural correlations, that is, the InOg chains,
are suppressed by the increased disorder below the mobility
peak, whereas above the peak, the additional energy (higher
T;) leads to the formation of short-distant edge-shared InOg

© 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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clusters. Finally, in the structures obtained with the quench
rates above 500 K ps~!, the two-state structure completely dis-
appears and a single localized state is formed in the DOS—as
should be expected for the most disordered structures.

Two important points must be made here. First, we stress
that the specific direction of the InOg chain in our calcula-
tions does not carry any meaning and is pertinent to the par-
ticular realization. MD simulations under identical conditions
(quench rates) or with a larger/smaller supercell (while keeping
the same O/M ratio) were found to result to different atomic
configuration; nonetheless, the outcome properties—a chain
of InOg polyhedra in the structure and a Coulomb gap in the
density of states—were preserved in each case. In a real sample
of indium oxide, multiple InOg chains of various lengths and
orientations are expected to coexist, all contributing to overall
enhancement of the carrier mobility.

Second, the medium-range structural correlations in amor-
phous oxides are likely to be highly sensitive to deposition and
post-deposition conditions (temperature, time, and ambient),
film thickness, as well as to cation composition since all the
above may have a strong effect on the In coordination and
the spatial distribution of the differently coordinated InO
polyhedra. In the next sections, the results of thorough theo-
retical investigations are shown to provide important insights
into the role of oxygen content (Section 5), cation composi-
tion (Section 6), and lattice strain (Section 7) on the local and
medium-range structure of AOSs.

Here, we give an example of how film thickness affects the
mobility behavior. In 350-450 nm and 850-1050 nm thick films
of (Zn0O) 15 (In;03)g.70 (SNO,)0 15 (or ZITO) grown by PLD at an
oxygen partial pressure of 8 mTorr, the measured Hall mobility
reaches the maximum value of 50 cm? V! s7! at the deposi-
tion temperature of Tj = 150 °C, at which both oxide films are
X-ray amorphous. However, the shape of the (1) curve differs
between the two films. In the thinner film, the mobility drops
to 35 cm? V71 s7! at Ty = 100 °C and to 20 cm? V™! sl at Ty =
300 °C, illustrating that the multi-cation composition broadens
the u(Ty) curve as compared to the sharp mobility peak in
amorphous indium oxide (see Supporting Information; the role
of cation composition in ternary In-based oxides is discussed
in more detail in Section 6). In the thicker film, the mobility
dependence on the deposition temperature is even weaker: the
mobility is equal to 30-32 cm? V™' s7! at Ty = —25 °C and at
Ty = 300 °C and it nearly plateaus above and below the peak
value, namely from 100 °C to 200 °C (see Supporting Infor-
mation). Clearly, the film thickness affects the formation and/
or distribution of the InOg4 chains, opening up a possibility to
tune the mobility behavior of AOSs for a specific technological
application.

4, Carrier Generation and Defect Formation
in AOSs

The key features of the electronic band structure of a trans-
parent conducting oxide host—a wide optical band gap and a
single highly-dispersed conduction band—originate from the
metal-oxygen interactions.’” Since the local structure; that
is, the M-O distances and coordination, remains nearly intact
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upon amorphization,® the band gap and the electron effective
mass of an AOS should deviate insignificantly from the corre-
sponding crystalline values. Indeed, in the stoichiometric amor-
phous indium oxide, a-In,0; ¢, the delocalized nature of the
conduction band formed from the M-s—O-p states is preserved
under the structural transition, Figure 3, so that the calculated
supercell electron effective mass, 0.20 m,, is nearly identical to
that in the crystalline In,O;, 0.22 m,.. However, owing to the
wide distribution of the In-O coordination numbers in the
amorphous state (Figure 1le), the charge density distribution
calculated for the empty conduction band is not uniform: a
notable charge density accumulation is found in the interstitial
area between several under-coordinate In atoms, Figure 3d-f:
the charge originates at the In atom with the lowest coordi-
nation number (CN = 4.4), and spills toward its In neighbors
that are also under-coordinated (CN = 4.8). Low coordination
numbers imply that the corresponding InO polyhedra are
likely to be under-shared—owing to the lack of oxygen atoms
in the vicinity. In the cluster of the under-coordinate indium
atoms, the shortest In-In distance (3.3 A) corresponds to an
edge-sharing connection as expected (c.f., Figure 1d), while the
other two In-In pairs are under-shared: the In atoms located at
3.5 A from each other, share a corner (although there are edge-
shared In-In pairs at this distance; Figure 1d) and the In-In
pair at 3.8 A does not share an oxygen atom. The close prox-
imity of several under-coordinate under-shared In atoms indi-
cates the onset of the medium-range correlations discussed in
the previous section, and the charge density redistribution in
the empty conduction band of the stoichiometric amorphous
indium oxide is in accord with the well-defined conduction
paths shown in Figure 2d and e.

In contrast to the conduction states that remain delocalized
in the stoichiometric amorphous indium oxide, the structural
disorder reveals itself in the appearance of strongly localized
states near the top of the valence band (Figure 3a). These tail
states!”3758791 originate from the charge localization at under-
coordinate oxygen atoms (with a coordination number 3 or
below; c.f., Figure le) and contribute to the optical absorption
within the visible range, that is, at 2-3 eV (Figure 3c). The
degree of localization and the energy location of the tail states
with respect to the valence band edge depends strongly on the
oxygen/metal ratio (as discussed in more details later in this
section) and on the cation composition (see Section 5.4).

Similar to undoped TCOs, carriers in AOSs are introduced
in materials grown under oxygen-reduced conditions. In amor-
phous indium oxide grown by PLD at Ty = -25 °C with the
oxygen partial pressure varied from 1 mTorr to 16 mTorr during
the deposition, the carrier concentration increases linearly with
decreasing p(0,), achieving n = 5 x 102 cm™ (Figure 4). Ab
initio MD simulations of non-stoichiometric indium oxide,
a-In,0, o6, reveal a rigid-band-like shift of the Fermi level: the
occupied states at the bottom of the conduction band and in
the vicinity of the Fermi level remain delocalized—in accord-
ance with the unchanged mobility for the samples grown with
p(0,) = 8-16 mTorr, = 50 cm? V' s7! (Figure 4a). The charge
density distribution calculated for the partially occupied con-
duction band shows a weak electron localization in the area sur-
rounded by under-shared In atoms (Figure 3e). Similar to the
stoichiometric case, the charge originates at an under-coordinate
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Figure 3. Electronic properties of amorphous indium oxide structures with different oxygen stoichiometry. The atomic structures were obtained using
ab initio MD simulations with quench rate of 200 K ps™' and optimized using DFT-PE approximation; the electronic structure was calculated using
hybrid HSE functional. a) The calculated inverse participation ratio in a-In,O;_g structures. The Fermi level is at 0 eV. b) The electronic band structure
of the conduction band in crystalline (dashed line) and amorphous (solid red line) stoichiometric indium oxide. c) The calculated optical absorption
in a-In,03_g structures. d—f) The charge density distribution calculated for the conduction band in stoichiometric and non-stoichiometric amorphous

indium oxides.

In (the coordination number is 4.5) and spills toward two In
neighbors located at 3.1 A and 4.0 A from the under-coordinate
In atom. Such In-In distances correspond to face- and corner-
sharing (c.f., Figure 1d); however, the respective In atoms share
only two and no oxygen atoms, respectively. Structurally, the
“void” between the three under-shared low-coordinate In atoms
(Figure 3d and e) resembles an oxygen vacancy in a crystalline
oxide where three or four metal atoms also lose sharing when
the defect is introduced; a conceptual analogy with charged
oxygen vacancy defects has also been suggested for amorphous
oxides.””! From the electronic structure point of view, how-
ever, we argue that the crystalline and amorphous oxides are
fundamentally contradistinctive: owing to the many degrees of
freedom of the amorphous structure and its ability to accom-
modate an oxygen “vacancy” by structural relaxation beyond the
next-nearest neighbors, the under-shared In defect represents a
shallow donor state in a-In,0, o.

Upon the degenerate doping of the non-stoichiometric
amorphous indium oxide, the optical band gap broadens (due
to Burstein-Moss shift) and the material becomes transparent
within the entire visible region (Figure 3c). Further decrease
of the oxygen content in amorphous indium oxide leads to
the formation of a strongly localized state in the band gap. For
a-In,0,,, a deep defect is formed at about 1.2 eV below the
Fermi level (Figure 3a); the charge density distribution calcu-
lated for the defect state reveals that the strong localization
occurs between two under-coordinate In atoms (the coordi-
nation numbers are 3.8 and 3.9) that do not share an oxygen
atom between them—despite being located at a short distance
of 2.7 A (that is comparable to the metallic In-In distance in
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the elemental In crystal; Figure 3f). The strong electron locali-
zation between the under-coordinate under-shared In atoms in
the oxygen-deficient amorphous oxides is expected to limit the
carrier mobility due to charge scattering; indeed, the measured
Hall mobility is suppressed to 10 cm? V-! s71 at p(O,) = 1 mTorr
(Figure 4a). In addition to the detrimental effect on the car-
rier transport, the deep defects contribute to optical absorption
(Figure 3c), reducing the optical transmission within the visible
range and being responsible for darker coloration of the AOSs
samples.

The role of the [Oxygen]/[Metal] ratio in the formation of
both the valence and conduction defect states is summarized
in Figure 4b. In the perfectly stoichiometric case; that is, when
[O]/[In] = 1.50 in the undoped indium oxide, most of the In
atoms have high coordination with oxygen atoms and most of
the InO polyhedra are shared according to the corresponding
In-In distances, namely, edge-shared for dj, , = 3.4 A and
corner-shared for dy, 1, = 3.7 A. All deviations in the coordina-
tion numbers or polyhedra sharing are absorbed by the amor-
phous structure via local polyhedral distortions and the MO net-
work reorganization; as a result, the conduction band is empty.
When the [O]/[M] ratio decreases below the stoichiometric
value, the number of under-coordinate metal atoms increases;
clustering of such under-coordinate In atoms into a group of
under-shared polyhedra leads to the formation of an oxygen-
depleted area that structurally is similar to the In—-O features
around an oxygen vacancy in the crystalline oxides. Electroni-
cally, the defect corresponds to a shallow electron donor and,
in marked contrast to the crystalline oxides, exhibits very weak
electron localization—owing to the ability of the amorphous
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Figure 4. Electrical properties and defect formation in amorphous indium oxide. a) Experimental Hall mobility, carrier concentration, conductivity,
and excess collision frequency (see Supporting Information) in amorphous indium oxide films of 270-390 nm thickness grown by PLD at deposition
temperature Ty = -25 °C as a function of oxygen partial pressure. b) Summary of the structural peculiarities and the resulting electronic features near
the valence and conduction band edges for AOSs as a function of variable [Oxygen]/[Metal] ratio.

structure to reduce the charge imbalance via a long-range struc-
tural relaxation around the defect. The theoretical predictions
of weak electron scattering in marginally under-stoichiometric
amorphous oxides are corroborated by our experimental obser-
vations of the constant carrier mobility for the samples grown
with the O, pressures of 8-16 mTorr as well as the low excess
collision frequency (see Supporting Information) within this
p(O,) range (Figure 4a).

The number of free carriers continues to steadily increase
at lower oxygen content; at the same time, indium atoms with
very low coordination may pair up forming short-distant metal—
metal bonds—provided that there are no oxygen atoms avail-
able to be shared between these low-coordinate In atoms. The
strongly localized defects associated with a trapped electron
at the M—M bond, appear below the conduction band edge—
once the [O]/[M] ratio is smaller than a certain composition-
specific threshold. For undoped indium oxide, the threshold
corresponds to theoretical oxygen stoichiometry In,0; 5 with
6 = 0.08 in the structures simulated with MD quench rate of
200 K ps~! and to experimental p(O,) = 7 mTorr in PLD-grown
samples of 270-380 nm thickness deposited at Ty = -25 °C. It
is important to stress that the deposition technique and condi-
tions as well as the cation composition are expected to have a
significant effect on the defect formation in AOSs. In addition,
post-deposition annealing is an effective tool to improve the
carrier mobility in AOSs since the extra energy due to heating
allows the amorphous network to reorganize (e.g., via oxygen
diffusion) in order to better accommodate the irregular charge
density distribution and, hence, to suppress the strongly local-
ized defects.

The formation of tail states near the top of the valence band
associated with under-coordinate oxygen atoms®”! is also gov-
erned by the [O]/[M] ratio. For the three amorphous structures
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of indium oxide; that is, the perfectly stoichiometric In,0; as
well as In,0, ¢ and In,0,, (Figure 3a), the localization of the
tail states decreases with increased oxygen stoichiometry—
an opposite trend to the localization of the conduction band
defects. Indeed, at larger [O]/[M] ratios, the increased number
of fully coordinate metal atoms screens an under-coordinate
oxygen defect more effectively, leading to a stronger localization
of the corresponding tail states above the valence band edge.

Thus, the formation of both the valence and conduction
band defects is intrinsically interconnected (Figure 4b); tuning
the [O]/[M] ratio that governs the defect concentration as well as
the degree of localization of the defects will ensure an optimal
electrical and optical performance in AOSs.

5. Role of Cation Composition in Structure
and Properties of AOSs

5.1. Local Structure and Amorphization Efficiency

In multicomponent AOSs, two or more binary oxides are
mixed during the deposition to facilitate the formation of an
amorphous state at room temperature. As expected, structural
disorder increases with the substitution level in ternary and
quaternary AOSs; however, there is no clear understanding
regarding the role played by the individual metal species in
the formation of amorphous state and the AOSs proper-
ties. Most research has focused on quaternary oxides such
as a-In-Ga-Zn-O or a-Zn-In-Sn-O given their technological
appeal;[#8:49-51-57.62-66,68,69.73,7476] only a few studies addressed
the properties of ternary AOSs systematically.[°”3>80] Moreover,
a comparison of the results available in the literature is likely
to be inconclusive because the crystallization temperature
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depends strongly not only on the metal composition but also
on growth conditions (such as oxygen partial pressure, post-
deposition temperatures and times) as well as film thickness.

To understand the underlying microscopic mechanisms
that govern the amorphization process in post-transition metal
oxides, the local and medium-range structural features of amor-
phous In-X-O with 20% fractional substitution of X = Ga, Zn,
or Sn (labeled a-IGO, a-IZO, or a-ITO hereafter) are systemati-
cally compared to those in amorphous indium oxide (a-10). All
structures were obtained from ab initio MD simulations with
the same quench rate of 200 K ps™' and the same oxygen stoi-
chiometry; namely, (In;0396)22(G2;03)s, (I1205.96)22(Z00)1,
and (In,0,.96)22(Sn0,)19, which was set in all structures prior
to quenching. It is found that the addition of Ga,03, ZnO, or
SnO, into the indium oxide host i) increases the local distor-
tions of the InO polyhedra as signified by a larger variance for
the first-shell In-O distances, 1.07 x 102 A%, 1.05 x 1072 A2
or 1.24 x 102 A? in a-IGO, a-1Z0, or a-ITO, respectively—as
compared to 6> = 8.42 x 10> A? in amorphous indium oxide;
and ii) suppresses the number of high-coordinate In atoms
(the effective coordination number 5.5 or above) from 44% in
amorphous indium oxide to 23% in a-IGO and a-ITO and to 9%
in a-IZ0 (note that a single amorphous structure from an MD
simulation at 300 K or from a DFT-optimized solution at 0 K
tend to overestimate the In—-O coordination in a-In-X-O with
X = Ga or Zn as compared to amorphous indium oxidel*>%3
in contrast to the time average presented here). The smallest
amount of the fully coordinate In atoms in a-IZO is in accord
with the highest crystallization temperature measured experi-
mentally in In-Zn-O with 10% of zinc; namely, 630 °C. For
comparison, the crystallization temperature; that is, the tem-
perature at which the bixbyite In,0; fraction exceeds 80%, is
measured to be 120 °C in undoped amorphous indium oxide,
450 °C for 20% of Ga substitution, and only 160 °C for 10%
of Tin, all grown by PLD under the same oxygen pressure of
8 mTorr.

The experimental trend in the crystallization temperature
(Teayst(ITO) << Toyt(IGO) < Tiryst(IZ0)) cannot be explained by
the aforementioned changes in the local first-shell In-O struc-
ture alone. One needs to look at the local structure of the XO
polyhedra, although the Ty trend does not appear to directly
correlate with the strength of the metal-oxygen bond of the
added metal (Sn—-O < Zn-O << Ga—-0). The results of our MD
simulations for amorphous In-X-O provide the following
insights: 1) In marked contrast to the under-coordinated In
atoms, the majority of the X cations attain their natural coordi-
nation; that is, the coordination in the corresponding crystalline
binary or ternary oxides; namely, 4 for Zn, 6 for Sn, and 4, 5 or
6 for Ga (Figure 5). ii) At room temperature, the oxygen coor-
dination is “frozen” for most of the X cations: the coordination
variance averaged over the MD time period of 6 ps is 0.07 for
Ga atoms, 0.06 for Sn, and 0.11 for Zn at 300 K. These values
are notably smaller than the average variance for the In coordi-
nation; namely, 0.14 in a-IGO or a-IZO and 0.15 in a-ITO, also
calculated at 300 K. iii) Most importantly, the X cations behave
differently once the temperature is increased (Figure 5b), in
contrast to Tin atoms, where the calculated coordination vari-
ance remains small even at 500 K; namely <0.11, the average
variance in the Zn-O coordination is almost two times larger,
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0.19 at 500 K. For Ga atoms, the average coordination variance
is 0.16 at 500 K, making the trend in the calculated coordina-
tion variance (Sn—O in ITO < Ga-O in IGO < Zn-O in IZO)
to be in accord with the observed crystallization temperature in
In-X-O for X = Sn, Ga, and Zn. The large deviations in the
coordination of particular Ga or Zn atoms at high tempera-
ture arise from the ability of these cations to adopt to several
oxygen environments. Specifically, while Zn atoms are 4-coor-
dinate in wurtzite ZnO and Ga atoms are 4 and 6-coordinate
in monoclinic B-Ga,0s;, both are 5-coordinate in crystalline
InGaZnO,.*% Thus, the large deviations in the Ga-O and Zn-O
coordination associated with the multi-coordinate nature of
these cations, along with the ability of the host atoms to easily
adjust to a changing oxygen environment, help maintain the
disorder in these In-based AOSs at high temperatures.

Another important factor governing the amorphization pro-
cess is the medium-range structural preferences of the added
metal atoms; that is, sharing of the XO polyhedra and the
resulting spatial distribution of differently coordinated InO
and XO polyhedra. In accord with the observed low effective-
ness of tin to amorphize indium oxide structure, the number
and the distribution of edge- and corner-shared MO polyhedra
obtained from MD simulations deviates insignificantly from
those in undoped amorphous indium oxide (Figure 5c). This
finding stems from the similarities in the electronic configura-
tion, ionic size, and oxygen coordination preferences of Sn and
In cations. Moreover, the majority (over 60%) of the introduced
edge-shared connections with short M—M distances, 3.0-3.2 A
(Figure 5¢) involve Sn atoms. This result signifies that tin has a
tendency to promote clustering, especially at high concentration
of Sn (that also limits the carrier mobility of a-ITO, as dis-
cussed in Section 5.3 below). In marked contrast to Sn, the addi-
tion of both Ga and Zn not only suppresses the edge-sharing
peak in the M-M distribution, but also leads to a much broader
range of the corner-shared M—M pairs. As a result, the edge- and
corner-sharing peaks overlap completely (Figure 5c), suggesting
that the medium-range disorder in a-IZO and a-IGO increases
as compared to that in a-I0 and a-ITO. Experimentally, the
second and third shells cannot be fitted in this case; the corre-
sponding structures are often called EXAFS-free amorphous.!®’]

Last but not least, an internal strain introduced by the pres-
ence of additional cations may also affect amorphization. A
systematic experimental and theoretical study of the amor-
phous indium oxide doped with group III metals, Sc, Y, and
La, showed that the amorphization efficiency increases with the
size of the ionic radius of the substituted cation.l”) The local
structure comparison of the amorphous In-X-O with 20% sub-
stitution of X = Sc, Y, or La have revealed that scandium is too
small to suppress the amount of InOg polyhedra and to prevent
their clustering, whereas lanthanum is large enough to make
the In-La—O samples fully X-ray amorphous—even with only
5% La doping in films processed at 300 °C.[*7]

While a theoretical calculation of the crystallization tempera-
ture in a-In-X-O is beyond the scope of this work, the above
results of the MD liquid-quench simulations clearly illustrate
that complex interplay between the local and medium-range
structural preferences of both the host and the substitution
metals must be taken into account in the search for efficient
amorphizers.
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Figure 5. Structural properties of amorphous In-X—O with 20% fractional substitution of X = Ga, Zn, or Sn. The structures were obtained from ab
initio MD simulations with quench rate of 200 K ps™'; the oxygen stoichiometry is 2.96. a) Distribution of differently coordinated In, O, or X atoms in
a-In-X-0. Coordination distribution in amorphous indium oxide is given for comparison as grey bars. b) The coordination of X atoms averaged over
time as obtained from MD simulations at 100 K (circle), 300 K (square), or 500 K (triangle). c) Distribution of the edge-shared (solid line), corner-
shared (dotted line), and non-shared (dashed line) M—M neighbors as a function of the metal-metal distance in amorphous 1ZO (blue), ITO (orange),

IGO (green), and 1O (grey).

5.2. Carrier Generation in Multi-Cation AOSs

One of the major differences between the multi-cation crys-
talline and amorphous oxide semiconductors concerns car-
rier generation. In striking contrast to crystalline TCOs where
external aliovalent doping is the most viable way to generate
free carriers and to control the carrier concentration over a
wide range (from 10V to 10?! cm™), additional cations in
AOSs do not act as carrier donors or acceptors. This is evi-
dent from the following: i) for amorphous In-X-O with as
much as 30% substitution of X = Ga, Zn, or Sn, grown by PLD
using a deposition temperature of Ty = -25 °C and an oxygen
partial pressure of 8 mTorr, the measured carrier concentra-
tion, n = 0.8 x 102 cm™, 1.2 x 102 cm™3, or 1.6 x 102° cm™3,
respectively, is similar or, in the case of a-ITO, identical to that
in undoped amorphous indium oxide grown under the same
deposition conditions, n = 1.6 x 102 cm=3;*l and ii) our cal-
culated electronic band structure of stoichiometric amorphous
ternary In-X-O or quaternary In-Ga-Zn-0O, Zn-In-Sn-0, etc,
oxides corresponds to an insulator—independent of the level of
fractional substitution and the valence of added cation(s) with
respect to the valence of the host cation.

The fact that aliovalent cation(s) in In-based AOSs do
not serve as free electron dopants stems from an ability of
the cations to attain their preferred local oxygen environ-
ment—an advantage provided by the amorphous structure
with many degrees of freedom. A structural analysis of amor-
phous In-X-O with 20% of X = Ga, Sn, or Zn obtained using
ab initio MD simulations, shows that the XO polyhedra are
highly distorted—as signified by the average variance of the
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first-shell X-O distances, namely, 1.89 x 1072 A2 091 x 102 A2,
or 1.34 x 102 A% in a-IGO, a-ITO or a-1ZO, respectively, being
comparable to those for the In-O distances in these ternary
structures, o> = 1.1 — 1.2 x 102 A2, Despite the strong local
distortions, the X cations tend to have high coordination with
oxygen atoms: as mentioned in the previous section, most of
the X atoms attain their natural coordination; that is, the one
found in the corresponding crystalline binary (4 for Zn; 6 for
Sn; and 4 or 6 for Ga, as in monoclinic 3-Ga,03) or multi-cation
oxides (for example, both Ga and Zn have 5-fold coordination
with oxygen in crystalline InGaZnO,). In a-In-X-O with 20%
of X = Ga, Sn, or Zn, the majority of Zn and Sn atoms are four
and six coordinated, respectively (Figure 5). In a-IGO, about two
thirds of the Ga atoms are four coordinate, while the coordina-
tion of the rest of the Ga atoms is equally distributed between
above 4.0 and below 5.0 (Figure 5). Similarly, it has been found
that adding 20% of GeO,, Sc;03, Y,03, or La,0; into indium
oxide melt, resulted in Ge, Sc, Y, or La reaching their natural
coordination upon the MD quenching of the amorphous
oxides.”?l The fulfilled coordination with oxygen atoms is in
accord with the stronger bonding between the oxygen and the
added metal species with respect to that of the host metal; that
is, the In-O bonds.

In contrast to the fully coordinate minority cations in the
amorphous In-X-O, the average coordination of indium is
reduced from 5.3 in a-10 to 5.1 in a-IGO and to 5.0 in a-ITO
and a-I1Z0. The presence of X leads to an increased number of
low-coordinate In atoms (with the coordination number 5.0 or
below) as compared to that in amorphous indium oxide; more-
over, for many of the indium atoms the coordination varies by
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as much as 2, for example, between 4 and 6, within a 6 ps time
period at room temperature. The electronic structure calcula-
tions of non-stoichiometric amorphous In-X-O (with oxygen
stoichiometry similar to that considered in a-In,0,qs c.f,
Figure 3a—f) confirm that indium remains to serve as the main
source of donor defects upon fractional substitution with X. The
calculated charge density distribution in the partially occupied
conduction band reveals that among all possible metal-metal
nearest neighbor pairs, the largest charge value belongs to two
In atoms that are under-shared and have low-coordination with
oxygen atoms: for all three compositions considered; that is, for
In-X-O with X = Ga, Sn, or Zn, the coordination number for
both In atoms is 4.6 — 4.8, the In—In distance is 3.2 — 3.4 A,
and the two indium atoms are corner shared; that is, missing
the second oxygen atom the two are supposed to share at this
separation typical of edge-shared polyhedra. These structural
features of the oxygen-depleted region resulting in a notable
conduction charge accumulation in amorphous In-X-O, are
similar to those found in undoped amorphous indium oxide at
the same oxygen stoichiometry (see Section 4 and Figure 3a—f).

Importantly, our theoretical results support the weak depend-
ence of the experimental carrier concentration on the composi-
tion in amorphous ternary In-based oxides.”®! The electronic
structure calculations for the amorphous non-stoichiometric
In-X-0O with 20% of X show that the cation composition has
little effect on the conduction states below the Fermi level and
on the free carrier concentration: i) similar to a-IO (Figure 3),
the defect state remains to be shallow as seen from the low
value of the inverse participation ratio for the occupied states
in the conduction band of amorphous In-X-O (Figure 6); and
ii) the Burstein-Moss (BM) shift; that is, the Fermi level shift
into the conduction band, is 1.40 eV in a-ITO, 1.46 eV in a-IGO,
and 1.51 eV in a-I1ZO0, that is only slightly smaller than the shift
in a-I0, 1.61 eV, with the same oxygen stoichiometry. More-
over, additional calculations for an amorphous structure with
larger Ga fraction, In;,Ga30; 96 Where a BM shift of 1.55 eV
and a shallow donor state are obtained, further illustrate the
weak dependence of the number of free carriers on the cation
composition in AOSs with high oxygen stoichiometry (> 2.96).
Understanding the role of composition in the formation of
deep defects in multi-cation In-based amorphous oxides with
lower oxygen content (oxygen stoichiometry < 2.96) is a next
step and will be discussed elsewhere.

5.3. Electron Localization and Carrier Mobility

Although the presence of additional cations in In-based AOSs
does not govern the free carrier generation, composition-
induced differences in the oxygen-sharing and medium-range
spatial distribution of the differently coordinate InO and
XO polyhedra affect the carrier mobility. First of all, in con-
trast to the undoped indium oxide where a three-fold change
in the Hall mobility is observed above and below the transi-
tion to a fully amorphous state, as described in Section 3
above, the mobility in In-X-O is expected to have a weaker
dependence on the deposition temperature—owing to the sup-
pressed amount of the InOg polyhedra in the ternary oxides
(Figure 5a) and, hence, a decreased probability of InO4 chain
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formation (see Section 3 and Figure 2b). From experimental
observations, for IZO with 15% ZnO grown at an oxygen par-
tial pressure of 8 mTorr, the mobility stays at 60 cm? V! s7! for
the deposition temperatures Ty = 25 °C, 100 °C, and 200 °C.
Once the crystalline fraction starts to increase (above 200 °C),
the mobility gradually drops to 30 cm? V™! s at Ty = 400 °C.
An even weaker dependence of the carrier mobility on the
deposition temperature is found in ITO with 15% SnO,: the
mobility varies within 40 — 50 cm? V™! s7! for the deposition
temperatures —25 °C, 25 °C, 50 °C, 100 °C, and 200 °C; that is,
well below and above the transition to fully amorphous state
with no X-ray peaks observed at Tj = 50 °C and below. From
a technological point of view, a wider range of the deposition
temperatures for which the mobility is maintained, makes the
multi-cation AOSs more appealing as compared to undoped
amorphous indium oxide.

When the substitutional doping level in multicomponent
AOSs increases, clustering of fully coordinate X cations leads
to a non-uniform charge density distribution for the conduction
states and, therefore, to a variable range hopping®! through the
states of different energy. Accurate DFT-based hybrid-functional
calculations of amorphous In-X-O with 20% fractional substi-
tution of X = Ga, Zn, or Sn, reveal that the localization above
the Fermi level is strongest in In-Ga—O, followed by In-Sn-O,
In-Zn-O, and then In-O—in excellent agreement with the
observed trend of the Hall carrier mobility measured as a func-
tion of fractional substitution (0 — 30%) in amorphous In-X-O
(Figure 6c). The calculated charge density distribution for the
energy slice of 0.5 eV above the Fermi level (unoccupied states)
illustrates (Figure 6b) that an extra free electron is likely to get
trapped at the under-coordinate In atom surrounded by three
Ga atoms, all of which have their coordination fully satisfied.
Similar to the a-IO case where the electron density near the
Fermi level avoids the six-coordinate InOg (c.f., Figure 2d and e),
the empty states of the four-coordinate Ga atoms have a higher
energy and, hence, are not available for the conduction electron
to propagate.

To further understand the role of different cation species in
carrier transport of amorphous In-X-O, the conduction charge
density (for the unoccupied states within 0.5 eV above the
Fermi level) is calculated along all metal-metal nearest neigh-
bors and the results are compared for In-In, In-X, X-In and
X-X pairs in each structure. It is found that, independent of
doping, the average charge density values for the In—In neigh-
bors are nearly identical for X = Ga, Sn, and Zn, whereas the
contributions from X-In and X-X pairs are cation-specific:
on average, the charge density is large near Sn atoms (slightly
larger than that for In—In neighbors), almost two times smaller
near Zn, and even smaller near Ga (Figure 6d). The non-uni-
form charge density distribution in the conduction states of
multi-cation AOSs is associated with i) different strength of
the metal-oxygen bonds; ii) different M-O coordination and
the degree of local distortions in the MO polyhedra; as well as
iii) spatial distribution of the MO polyhedra, e.g., clustering of
GaO, vs. chain formation of InOg—SnOg vs. random distribu-
tion of Zn0,.”l All the above local and medium-range struc-
tural features ultimately determine the energy profile of the
conduction states and are responsible for the complex nature of
the carrier mobility in multicomponent AOSs.

© 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 6. Electronic properties of amorphous In-X-O with 20% of fractional substitution of X = Ga, Zn, or Sn. The structures were obtained from
ab initio MD simulations with quench rate of 200 K ps™' and optimized using DFT-GGA approximation; the electronic structure was calculated using
hybrid HSE functional. a) The calculated charge density distribution for the tail defect state at the top of the valence band in a-In-Sn-O. b) The
charge density distribution calculated in the energy slice of 0.5 eV above the Fermi level in a-In-Ga—O. c) The calculated inverse participation ratio
in a-In-X—0O structures for the valence (left panel) and conduction bands (middle panel). The Fermi level is at O eV. Experimental Hall mobility in
amorphous In-X-0O as a function of fractional substitution of X (right panel). The samples were obtained using PLD at deposition temperature Ty =
—25 °C and with oxygen partial pressure of 8 mTorr. d) Charge density contributions calculated along the In—In, In-X, X-In and X-X bonds in In-X-O:
the average charge values near the first metal atom in the given pair are shown. e) Calculated optical absorption as a function of composition in non-
stoichiometric amorphous 10 (In;0,¢¢) and In-X-O (1Z019% = (In;0;.96) 22(ZN0O) 10, ITO19% = (1N;05.96) 22(SNO2)10, IGO19% = (In;0.96) 22(Ga203)55,

and 1GO41% = (In,0;.94)16(Ga;03) 7).

5.4. Tail States and Optical Band Gap as a Function
of Composition

From a technological point of view, the wide range of frac-
tional compositions in ternary and quaternary AOSs is highly
appealing for tuning the optical band gap and work function
in these multifunctional materials.®>%! First, the effect of
cation composition on the tail states near the top of the valence
band of AOSs is generalized.”? As mentioned in Section 4, a
strongly localized state is formed when an under-coordinate
oxygen atom is surrounded by fully-coordinate metal atoms
resulting in a charge imbalance. In amorphous In-X-O with
20% of X = Ga, Zn, or Sn, the number of under-coordinate
oxygen atoms increases as compared to undoped amorphous
indium oxide (c.f., Figure 3a)—and so does the electron locali-
zation at the defect states near the valence band maximum
(Figure 6¢). With over 30% of three-coordinate oxygen atoms in
a-In-Sn—O, the localization of the tail states is the strongest in
this case. As shown in Section 4, the tail states contribute to the
optical absorption at 2-3 eV for stoichiometric a-IO (Figure 3c).
When the [O]/[M] ratio is reduced, the number of fully coor-
dinate metal atoms decreases and, consequently, both the con-
centration of such defects as well as the degree of the electron
localization caused by the defects are suppressed.

The presence of valence band tail states becomes irrelevant
for the optical transmission of under-stoichiometric AOSs—
owing to the pronounced Burstein—-Moss shift upon the degen-
erate doping. From the accurate DFT-based hybrid-functional
calculations of the real and imaginary dielectric function for
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amorphous In-X-0 with 20% fractional substitution of X = Ga,
Zn, or Sn, it is found that all three compositions demonstrate
low optical absorption within the visible range; that is, for
1.8-3.0 eV (Figure 6e). Compared to amorphous indium oxide
obtained with the same MD quench rate and the same oxygen
stoichiometry as the In-X-O structures, addition of 20% of
zinc reduces the optical band gap by 0.2 eV, whereas the same
fraction of tin or gallium has no effect on the optical absorp-
tion edge and the gap remains equal to 3.2 eV (Figure 6e).
As expected, larger substitutional fraction of Ga opens up the
transparency window: the optical band gap for amorphous
In; 19Gag 10,94 is 3.5 eV. Thus, cation composition is an indis-
pensable tool to manipulate the crystallization, carrier trans-
port, as well as optical band gap of multicomponent AOSs.

6. Structure and Properties of AOSs under Strain

Another important technological advantage of AOSs is their
mechanical flexibility: the amorphous oxides are bendable and
maintain their excellent optical and electrical properties under
the strain.’”’l The superior mechanical properties of AOSs over
their crystalline counterparts that are brittle make the amor-
phous oxide semiconductors an attractive candidate for flexible
transparent electronics.

To understand how the structural, electronic, and optical
properties of AOSs change under strain, amorphous In,0;
and Zng30lng 40500300304 (2-ZITO) structures were simulated
using MD liquid-quench approach with 200 K ps™ rate. Once

© 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



ADVANCED
SCIENCE NEWS

ADVANCED
ELECTRONIC

www.advancedsciencenews.com

the amorphous structures were equilibrated at 300 K and opti-
mized within DFT, the volume of the cells was changed to
induce lattice strain and the atomic positions of all atoms in the
cell were fully relaxed within DFT for each configuration. The
structural analysis of the strained a-IO and a-ZITO reveals that
the average M—O distances increase slower than expected from
the volume expansion (Figure 7), suggesting that a structural
reorganization has likely occurred.

The coordination of all metal species decreases with strain,
albeit differently for each of the metal types (Figure 7d). Among
In, Zn and Sn, indium atoms steadily loose oxygen atoms at a
highest rate—in accord with its low coordination in amorphous
In-Sn-0O and In-Zn-O (see Section 4). The average coordina-
tion of tin is notably higher than that of indium but only up
to the lattice increase of 1.9%,; at that point, the Sn—O coordi-
nation drops from 5.3 to nearly 5.0 and the amorphous struc-
ture breaks—as signified by a discontinuity in the total energy
(for comparison, the structure of undoped amorphous indium
oxide withstands up to 3% lattice increase; Figure 7a). On the
contrary, zinc, having the strongest metal-oxygen bonds in
a-ZITO, maintains its coordination of four and even “picks up”
the oxygen atoms lost by Sn at the break point.

The first-shell characteristics of the metal constituents—the
metal-oxygen bond strength and the preference for specific MO
coordination—determine the sharing between the MO poly-
hedra and, consequently, the response of the medium-range
structure to the lattice expansion. As discussed in Section 2
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above, the crystalline-to-amorphous transition in amorphous
indium oxide suppresses the number of edge-shared InO poly-
hedra from 50% to 20% giving rise to predominantly corner-
shared polyhedra network in the amorphous state. Upon
volume expansion, the corner-sharing fraction increases to 90%
(Figure 7e). Because corner-shared MO polyhedra with only a
single connecting oxygen atom have more degrees of freedom
as compared to an edge-shared connection, the corner-shared
polyhedral network is capable to respond to the induced volume
expansion more efficiently, helping make the amorphous oxide
materials fracture-resistant. The ability of the corner-shared
M-M connections to absorb the internal lattice stress is likely
to be the main reason for the slow increase of the MO distances
upon the lattice strain (Figure 7b).

Schematically, the local and medium-range structural
changes upon the lattice strain in AOSs can be represented as
follows (Figure 7f): i) Initially, two six-coordinated MO poly-
hedra are connected via two oxygen atoms; that is, are edge-
shared. ii) The volume expansion causes one of the polyhedra
loose an oxygen atom to become five-coordinate, making the
oxygen environment around this under-coordinate metal atom
uneven (the cation “sticks out” on one side of the polyhedra).
iii) Further volume expansion transforms the M—M connection
from edge-shared to corner-shared; this transformation reduces
the coordination of the other metal atom from six to five which
allows both metal cation to achieve a uniform, charge-balanced
oxygen coordination. Thus, strain-induced changes in sharing
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Figure 7. Structural and electronic properties of amorphous In-O (a-10) and Zn-In-Sn—O (a-ZITO) under strain. The latter amorphous structure with
the cation ratio of [In]:[Zn]:[Sn] = 5:1:1 was obtained from ab initio MD simulations with quench rate of 200 K ps~'. Upon the volume change, each
structure was optimized using DFT-GGA approximation. a) The calculated total energy as a function of the lattice parameter in a-10 and a-ZITO. b) The
average M-O distances; c) the calculated band gap and electron velocity; d) the average M—O coordination; and e) the calculated fraction of corner-
shared In—In pairs as a function of the lattice parameter in a-ZITO. f) Structural changes in a-ZITO upon volume expansion.
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Figure 8. Four-dimensional parameter space for prototype In-based AOSs.

of the MO polyhedra play a crucial role in the mechanical prop-
erties of AOSs.

As expected from the longer M-O distances upon the
volume expansion, the calculated band gap in strained a-ZITO
steadily decreases up to the breaking point (Figure 7c). Above
the 1.9% lattice increase, the band gap value remains to be
2.6 eV—consistent with the fact that the average In-O and
Sn-O distances slightly shorten at the break point and do
not increase further above the break point. The latter finding
may be explained by a formation of a void in the amorphous
structure upon break, whereas the first-shell M—O distances
are maintained, on average. Based on a simple descrip-
tion of the electronic states of a semiconductor using k - p
theory,®® a smaller band gap value should lead to a smaller
electron effective mass and a larger electron velocity due to
an increased dispersion of the conduction band. In a-ZITO,
however, the electron velocity calculated for the amorphous
supercell at 0.5 eV above the conduction band minimum, is
found to decrease with volume expansion (Figure 7c). The
reduction of the electron velocity can be explained based on a
comparison of the calculated inverse participation ratio values
in the strained a-ZITO: upon the volume expansion, both the
IPR value of some states in the conduction band as well as
the number of such localized states increase. The formation
of such electron-trapping defects is associated with the energy
disparity between the differently-coordinated MO polyhedra
(for example, fully-coordinate ZnO, vs. under-coordinate
InO and SnO) that increases with volume expansion. Despite
the strain-induced electron localization, both the calculated
band gap (2.6-2.9 eV) and the supercell electron velocity
(6-7 X 10° m s7}) in the amorphous Zn-In-Sn-O remain to be
comparable to the values of typical TCOs,*” suggesting that
AOSs retain their excellent optical and electrical properties
under strain.
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7. Conclusions

The results of systematic ab initio MD simulations, highly
precise DFT-based electronic structure calculations, and
detailed experimental observations for several In-based oxides
are combined into a comprehensive framework to describe
the complex microscopic behavior in the prototype AOSs.
Four major components that comprise the parameter space
of the AOSs (Figure 8), namely i) deposition temperature; ii)
oxygen stoichiometry; iii) cation composition, and iv) lattice
strain, were studied independently. Contingently, the primary
role(s) played by each of the four parameters are categorized
as follows:

Deposition temperature (or theoretical quench rate) gov-
erns the structural and, consequently, the transport regimes
during the amorphous to crystalline transition in the oxides.
As the structure transforms from nanostructured amorphous
to coexistence of crystalline and amorphous phases, and further
to crystalline grains, the primary carrier transport mechanism
changes from localization, to hopping, to multi-phase perco-
lation and scattering, and further to bulk conductivity, respec-
tively. The developed theoretical model of prototype In-based
AOSs provides a fundamental basis for a versatile description of
the structural archetypes in these non-periodic oxide systems—
from distorted polyhedral network to nano- and microstructure.

Cation composition allows one to control the crystallization
temperature and, hence, to fine-tune the degree of amorphiza-
tion as well as the degree of electron localization governed by
composition-dependent characteristics of variable range hop-
ping. Both the substitutional doping level and the type of added
metal species have a strong effect on the robustness of the MO
chains and the AOSs nanostructure, and therefore, determine
the limits of the carrier mobility in the amorphous regime and
the range of deposition temperatures for high mobility.
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Another great technological advantage of the multi-cation
AOSs is tunable optical band gap and work function.

Oxygen stoichiometry proves to be the sole mechanism to
generate free electrons in AOSs. Given the many degrees of
freedom in the amorphous structure, the long-range struc-
tural characteristics and the electronic properties of the donor
defects in AOSs differ fundamentally from those in their crys-
talline oxide counterparts. The oxygen/metal ratio controls the
formation of structural defects near both band edges of the
semiconductor: the concentration as well as the degree of locali-
zation of the conduction defects are interrelated to those of the
valence tail states. Importantly, the results show that defects in
AOSs require full MD simulation and cannot be modeled with
simple post-quench oxygen vacancies.

Lattice strain associated with external or internal stress (e.g.,
due to flexible organic substrate, thin film geometry, or mis-
matched cation size) affects the local distortions in the MO
polyhedra as well as in the polyhedral network and may further
enhance the effects of deposition temperature, oxygen stoichi-
ometry, or cation composition on the defect formation!*! as
well as on the transport and optical properties of AOSs.

The thorough microscopic understanding gained within
the framework of this four-dimensional parameter space of
the In-based AOSs, serves as a solid foundation for i) finding
an optimal set of parameters to tailor the electrical, optical,
thermal, and mechanical properties of AOSs for specific appli-
cations, enhancing the utility of these materials for practical
devices; and ii) exploring possible ways to extend the phase
space of known AOSs by including novel anion and cation com-
positions toward next-generation amorphous semiconductors.

8. Experimental Section

Theoretical calculations: The amorphous oxide structures were
generated using first-principles molecular-dynamics (MD) liquid-
quench simulations as implemented in the Vienna Ab Initio Simulation
Package (VASP).'%103] The calculations are based on the density
functional theory (DFT) with periodic boundary conditions and employ
PBE functionall'®! within the projector augmented-wave method.['9%106]
A bixbyite cell of In,0; with crystalline density of 7.12 g cm™ and with
80 (or 134) atoms per cell was used as initial structure which was
melted at 3000 K to eliminate any crystalline memory. To model non-
stoichiometric indium oxide, oxygen atoms were randomly removed
from the melt and the new structures were kept at 3000 K for additional
5-10 ps to randomize the configuration. Similarly, for doped indium
oxide, random In atoms were substituted with a specific fraction of Ga,
Sn, or Zn, and the cell density as well as the oxygen/metal ratio were
adjusted prior to additional melting. Specifically, the density of In-X-O
with 20 at% X was 6.90 g cm™, 6.99 g cm™, and 6.75 g cm™ for X =
Ga, Sn, and Zn, respectively. For each of the In-based oxide melt, liquid
quench simulations were performed as follows. The structure was
cooled to 1700 K at the MD rate of 100 K ps~' and then rapidly quenched
to 100 K with a desired rate (5-900 K ps™'). An energy cut-off of 260 eV
and single T-point were used during melting and quenching processes.
Finally, each structure was equilibrated at 300 K for 6-10 ps with a
cut-off energy of 400 eV. All MD simulations were carried out in the
NVT ensemble with the Nose—Hoover thermostat using an integration
time step of 2 fs. For an accurate structural analysis of the theoretically
modeled AOSs, the average pair correlation function and the average
effective coordination number were calculated.1% Note that in this
work the coordination distribution is obtained as a time average; that
is, as an average of the coordination distribution over at least 5000 MD
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steps at 300 K. The time averaging represents a more reliable approach
as compared to the structural analysis of a single amorphous structure
by capturing the structural variations at given temperature.

Next, the atomic configurations obtained from the ab initioc MD
simulations were optimized using the PBE functional.'®l For the
optimization, a cut-off energy of 500 eV and the 4 x 4 x 4 I'-centered
k-point mesh were used; the atomic positions were relaxed until
the Hellmann—Feynman force on each atom was below 0.01 eV A,
The electronic and optical properties of amorphous In-based oxides
were calculated using the hybrid Heyd-Scuseria-Ernzerhof (HSEO06)
approachl'®110 with a mixing parameter of 0.25 and a screening
parameter u of 0.2 A", To characterize the localization of the electronic
states within the band gap and near the band edges, the inverse
participation ratio (IPR) was calculated. Optical absorption was derived
from the frequency-dependent dielectric function, g(w) = & (o) + ig,(®),
calculated within independent particle approximation as implemented in
VASP. The imaginary part, & (w), is related to the optical absorption at a
given frequency @, and is determined based on the electronic transitions
of the hybrid functional solution. The real part of the complex dielectric
function is obtained using Kramers-Kronig relations.

The structural properties and charge density distribution in
amorphous oxides were analyzed and plotted using VESTA.''M]

Experimental procedure: Amorphous oxide thin films were grown by
pulsed-laser deposition (PLD) from a dense hot-pressed indium oxide,
zinc oxide, tin oxide, and gallium oxide targets (25 mm diameter). PLD
was accomplished with a 248 nm KrF excimer laser with 25 ns pulse
duration and operated at 2 Hz. The 200 m| per pulse beam was focused
onto a T mm x 3 mm spot size. Less than 1T monolayer is deposited
during each In,;03/XO PLD cycle to ensure mixing at the atomic-
layer level. The target was rotated at 5 rpm about its axis to prevent
localized heating. The target-substrate separation was fixed at 10 cm.
For multicomponent films the appropriate basis-oxide targets were
employed. A computer controlled shuttle was used to alternate ablation
between targets. Less than one monolayer of material was deposited
in a typical cycle between the targets to help ensure uniformity of film
composition; the ratio of the pulses for each metal oxide in each cycle
was adjusted to obtain the desired film composition. The compositions
reported are nominal compositions: the ratio of the number of dopant
pulses to total pulses. The films were grown on silicon substrates in
an O, ambient varied from 1 mTorr to 16 mTorr. The substrates were
attached to the substrate holder with silver paint and grown at a
deposition temperature specified in the text or figure caption. Films
grown above 25 °C were attached to a resistively heated substrate holder;
films grown below 25 °C were attached to a liquid nitrogen cooled
substrate holder. Sheet resistance (R,: Q [17"), carrier type, area carrier-
concentration (n,: 1 cm™2), and carrier mobility (Up,: cm? V7' s77) were
measured with a Ecopia 3000 Hall measurement system on samples in
the van der Pauw geometry. Carrier density (n,: 1 cm~3) and resistivity
(p: @ cm) were calculated by dividing the area carrier concentration
and sheet resistance, respectively, by the film thickness. Film thickness
(d: nm) was measured using a spectral reflectometer (Filmetrics F20).
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